Efficient monolithic simulation techniques for the stationary Lattice Boltzmann equation on general meshes
نویسندگان
چکیده
In this paper, we present special discretization and solution techniques for the numerical simulation of the Lattice Boltzmann equation (LBE). In [11] the concept of the generalized mean intensity had been proposed for radiative transfer equations which we adapt here to the LBE, treating it as an analogous (semi-discretized) integro-differential equation with constant characteristics. Thus, we combine an efficient finite difference-like discretization based on short-characteristic upwinding techniques on unstructured, locally adapted grids with fast iterative solvers. The fully implicit treatment of the LBE leads to nonlinear systems which can be efficiently solved with the Newton method, even for a direct solution of the stationary LBE. With special exact preconditioning by the transport part due to the short-characteristic upwinding, we obtain an efficient linear solver for transport dominated configurations (macroscopic Stokes regime), while collision dominated cases (Navier-Stokes regime for larger Re numbers) are treated with a special block-diagonal preconditioning. Due to the new generalized equilibrium formulation (GEF) we can combine the advantages of both preconditioners, i.e. independence of the number of unknowns for convection-dominated cases with robustness for stiff configurations. We further improve the GEF approach by using hierarchical multigrid algorithms to obtain grid-independent convergence rates for a wide range of problem parameters, and provide representative results for various benchmark problems. Finally, we present quantitative comparisons between a highly optimized CFD-solver based on the Navier-Stokes equation (FeatFlow) and our new LBE solver (FeatLBE). AMS Subject Classifications: 35A25, 65M06, 76D05, 76P05
منابع مشابه
Efficient simulation techniques of the Lattice Boltzmann equation on unstructured meshes
In this paper, we apply special techniques from Numerics for PDE’s to the Lattice Boltzmann equation. In [5] the concept of the generalized mean intensity has been proposed for radiative transfer equations. Here, we adapt this concept to the LBE, treating it as an analogous integro differential equation with constant characteristics. Thus, we combine an efficient finite differencelike discretiz...
متن کاملFully implicit nonstationary flow simulations with a monolithic off-lattice Boltzmann approach
In this paper, the previously described monolithic approach [6] for the stationary discrete Boltzmann equation is extended to time-dependent problems. In general, both collision and advection operators are discretized on nonuniform grids as opposed to the standard Lattice Boltzmann method. Implicit time-stepping schemes are applied for an accurate and robust numerical treatment of the nonstatio...
متن کاملA Simplified Curved Boundary Condition in Stationary/Moving Boundaries for the Lattice Boltzmann Method
Lattice Boltzmann method is one of computational fluid dynamic subdivisions. Despite complicated mathematics involved in its background, end simple relations dominate on it; so in comparison to the conventional computational fluid dynamic methods, simpler computer programs are needed. Due to its characteristics for parallel programming, this method is considered efficient for the simulation of ...
متن کاملکاربرد و مقایسه روش های بولتزمن شبکه ای مختلف با شبکه بندی غیریکنواخت در شبیه سازی جریان در داخل میکروحفره و میکروکانال
In this study, for the first time, a comparison of single-relaxation-time, multi-relaxation-time and entropic lattice Boltzmann methods on non-uniform meshes is performed and application of these methods for simulation of two-dimensional cavity flows, channel flows and channel flows with sudden expansion is studied in the slip and near transition regimes. In this work, Taylor series expansion a...
متن کاملEfficient computations for high density ratio rising bubble flows using a diffused interface, coupled lattice Boltzmann-level set scheme
A mass conserving, diffused interface, coupled Lattice Boltzmann-level set scheme is proposed and numerically studied for the simulation of high density and viscosity ratio multiphase flows. The approach is based on the pressure evolution formulation of the lattice Boltzmann equation, which is then coupled with the level set equation to capture a diffused level set function. Multiple relaxation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computat. and Visualiz. in Science
دوره 13 شماره
صفحات -
تاریخ انتشار 2010